115 research outputs found

    Recoloring graphs via tree decompositions

    Full text link
    Let kk be an integer. Two vertex kk-colorings of a graph are \emph{adjacent} if they differ on exactly one vertex. A graph is \emph{kk-mixing} if any proper kk-coloring can be transformed into any other through a sequence of adjacent proper kk-colorings. Jerrum proved that any graph is kk-mixing if kk is at least the maximum degree plus two. We first improve Jerrum's bound using the grundy number, which is the worst number of colors in a greedy coloring. Any graph is (tw+2)(tw+2)-mixing, where twtw is the treewidth of the graph (Cereceda 2006). We prove that the shortest sequence between any two (tw+2)(tw+2)-colorings is at most quadratic (which is optimal up to a constant factor), a problem left open in Bonamy et al. (2012). We also prove that given any two (χ(G)+1)(\chi(G)+1)-colorings of a cograph (resp. distance-hereditary graph) GG, we can find a linear (resp. quadratic) sequence between them. In both cases, the bounds cannot be improved by more than a constant factor for a fixed χ(G)\chi(G). The graph classes are also optimal in some sense: one of the smallest interesting superclass of distance-hereditary graphs corresponds to comparability graphs, for which no such property holds (even when relaxing the constraint on the length of the sequence). As for cographs, they are equivalently the graphs with no induced P4P_4, and there exist P5P_5-free graphs that admit no sequence between two of their (χ(G)+1)(\chi(G)+1)-colorings. All the proofs are constructivist and lead to polynomial-time recoloring algorithmComment: 20 pages, 8 figures, partial results already presented in http://arxiv.org/abs/1302.348

    Recoloring bounded treewidth graphs

    Full text link
    Let kk be an integer. Two vertex kk-colorings of a graph are \emph{adjacent} if they differ on exactly one vertex. A graph is \emph{kk-mixing} if any proper kk-coloring can be transformed into any other through a sequence of adjacent proper kk-colorings. Any graph is (tw+2)(tw+2)-mixing, where twtw is the treewidth of the graph (Cereceda 2006). We prove that the shortest sequence between any two (tw+2)(tw+2)-colorings is at most quadratic, a problem left open in Bonamy et al. (2012). Jerrum proved that any graph is kk-mixing if kk is at least the maximum degree plus two. We improve Jerrum's bound using the grundy number, which is the worst number of colors in a greedy coloring.Comment: 11 pages, 5 figure

    On the neighbour sum distinguishing index of planar graphs

    Full text link
    Let cc be a proper edge colouring of a graph G=(V,E)G=(V,E) with integers 1,2,…,k1,2,\ldots,k. Then k≥Δ(G)k\geq \Delta(G), while by Vizing's theorem, no more than k=Δ(G)+1k=\Delta(G)+1 is necessary for constructing such cc. On the course of investigating irregularities in graphs, it has been moreover conjectured that only slightly larger kk, i.e., k=Δ(G)+2k=\Delta(G)+2 enables enforcing additional strong feature of cc, namely that it attributes distinct sums of incident colours to adjacent vertices in GG if only this graph has no isolated edges and is not isomorphic to C5C_5. We prove the conjecture is valid for planar graphs of sufficiently large maximum degree. In fact even stronger statement holds, as the necessary number of colours stemming from the result of Vizing is proved to be sufficient for this family of graphs. Specifically, our main result states that every planar graph GG of maximum degree at least 2828 which contains no isolated edges admits a proper edge colouring c:E→{1,2,…,Δ(G)+1}c:E\to\{1,2,\ldots,\Delta(G)+1\} such that ∑e∋uc(e)≠∑e∋vc(e)\sum_{e\ni u}c(e)\neq \sum_{e\ni v}c(e) for every edge uvuv of GG.Comment: 22 page

    The interactive sum choice number of graphs

    Get PDF
    We introduce a variant of the well-studied sum choice number of graphs, which we call the interactive sum choice number. In this variant, we request colours to be added to the vertices' colour-lists one at a time, and so we are able to make use of information about the colours assigned so far to determine our future choices. The interactive sum choice number cannot exceed the sum choice number and we conjecture that, except in the case of complete graphs, the interactive sum choice number is always strictly smaller than the sum choice number. In this paper we provide evidence in support of this conjecture, demonstrating that it holds for a number of graph classes, and indeed that in many cases the difference between the two quantities grows as a linear function of the number of vertices

    Brooks' theorem on powers of graphs

    Full text link
    We prove that for k≥3k\geq 3, the bound given by Brooks' theorem on the chromatic number of kk-th powers of graphs of maximum degree Δ≥3\Delta \geq 3 can be lowered by 1, even in the case of online list coloring.Comment: 7 pages, no figure, submitte
    • …
    corecore